
Journal of Cellular Biochemistry Supplement 35:99±106 (2000)

Subnuclear Dynamics and Transcription Factor Function
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Abstract At a simplistic level, the nucleus can be thought of as singular organelle with a nuclear envelope
designed to isolate the biochemical reactions required for gene transcription and DNA replication from the cytoplasm. It
has become increasingly clear, however, that many higher levels of organization exist within the nucleus. A functional
consequence of this organization is that nuclear processes that include transcription, RNA processing, and DNA
synthesis are isolated to speci®c intranuclear domains to ensure ef®ciency. With the advent of GFP technologies and
increasingly sophisticated instrumentation, we have continued to dissect the relationship between organization and
function, in particular using live cells and ligand-dependent steroid receptors as a model system. These new
opportunities have provided further insight into receptor function and the dependence upon intranuclear dynamics that
take place within minutes of hormone addition. J. Cell. Biochem. Suppl. 35: 99±106, 2000. ß 2001 Wiley-Liss, Inc.
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The nucleus is a complex organelle containing
subnuclear domains that serve to partition the
machineries required for various types of nu-
clear metabolism. A critical question addressed
in this brief overview is the dynamic relation-
ship between nuclear organization, gene ex-
pression, and the nuclear matrix. Sites of newly
synthesized mRNA as visualized by bromour-
idine incorporation have a focal distribution
within the nucleus. As expected, RNA poly-
merases show a hyper-speckled distribution
and colocalize with newly made RNA [Jackson
et al., 1993; Wansink et al., 1993]. In particular
the active, hyperphosphorylated large subunit
of RNA polymerase II, forms from several
hundred to 4,000 foci indicating that mRNA
transcription is limited to discrete sites within
the nucleus [Jackson et al., 1998; Cook, 1999].

While the basis of the organization of the
nuclear domains involved in transcription

remains to be determined, growing evidence
indicates that the nucleus contains a network of
structured ®bers connected to the nuclear
lamina. This structure, commonly called the
nuclear matrix (NM), is de®ned as the compart-
ment of the nucleus, which is resistant to
detergent treatment, DNaseI digestion and
high salt extraction [Nickerson, 1995]. Ultra-
structural analyses following these treatments
reveal the existence of a structural network
comprised of highly branched ®laments within
the nucleus. Based on the assumption that an
extraction could result in artefactual ``struc-
tures'' and the inability to identify speci®c
structural proteins, the NM has been the
subject of controversy [Pederson, 2000]. How-
ever, it is extremely important to point out that
alternative approaches that utilize physiologi-
cal extractions or non-invasive microscopic
techniques provide ample evidence that the
NM is a bona ®de structure [Jackson and Cook,
1988; Nickerson et al., 1997; Hendzel et al.,
1999; Wan et al., 1999; see Nickerson, 2001].

Since much of the protein machinery for
transcription, RNA splicing and DNA replica-
tion is found associated with the NM, this
structure may be the basis for their organiza-
tion [Reviewed in Berezney et al., 1995; Nick-
erson et al., 1995; Stein et al., 2000; Nickerson,
2001]. While many of the basal transcription
components have been found organized in
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NM-bound foci, a question arises as to how
transcription factors that regulate transcrip-
tion during the cell cycle or in response to
outside stimuli are organized. In other words,
are foci formation and NM interaction funda-
mental steps in the regulation of the response
mediated by transcription factors?

The composition of NM varies in a cell-cycle
and differentiation speci®c way and this may
serve to modulate how cells respond to different
stimuli [Stein et al., 1996]. An example is re-
presented by the retinoblastoma protein (RB), a
prototypical tumor suppressor that interacts
with several transcription factors and other
proteins [Riley et al., 1994]. RB associates with
the NM in a cell-cycle dependent manner
(during G1), pointing to the dynamic nature of
NM association [Mittnacht and Weinberg, 1991;
Mancini et al., 1994]. The importance of this NM
association is highlighted by the observation
that inactivating RB mutations found in several
different tumors result in a complete loss of NM
association. Many transcription factors involv-
ed in tissue-speci®c differentiation have also
been shown to partition with the NM fraction
[van Wijnen et al., 1993]. Speci®c examples of
these are the POU-class transactivators, Pit-1
and Oct-1, which are distributed between
soluble and NM-bound fractions in an approxi-
mately 3:1 ratio [Kim et al., 1996; Mancini et al.,
1999]. The ®nding that soluble and insoluble
pools of transcription factors exist suggests that
NM-binding is a regulated process. In the case of
Pit-1, several inactivating mutations that lead
to dwar®sm (e.g., Pit-1 is required for growth
hormone synthesis) result in tighter NM asso-
ciation [Mancini et al., 1999]. New live cell
approaches utilizing photobleaching indicate
inactivating mutations affect Pit-1 mobility in a
multi-step fashion, prior to immobilization
(see below, Sharp ZD, Stenoien DL, Mancini
MG, Mancini MA, manuscript in preparation).
Taken together with the RB data, alterations in
NM binding dynamics either by decreasing
(as with RB mutations) or increasing (Pit-1
mutants) severely affects transcription factor
function. Furthermore, mutations that disrupt
the dynamic associations between transcrip-
tional regulators and the NM may have
functional consequences related to tumor sup-
pression or pituitary development and function.

Steroid receptors associate with the NM in a
tissue speci®c and hormone dependent manner
[Barrack, 1987]. The intracellular distribution

of steroid receptors in the absence of ligand
ranges from being predominantly cytoplasmic
in the case of the androgen receptor (AR) to
predominantly nuclear in the case of the
estrogen receptora (ER). This suggests that
nuclear localization of steroid receptors is not
suf®cient to ensure activity and subsequent
events are required for transcription initiation.
With the revolutionary development of func-
tionally active green ¯uorescent protein (GFP)
fusion proteins and high-resolution microscopic
techniques, it is possible to detect subtle
changes in steroid receptor localization imme-
diately following addition of agonist. In the case
of GFP-ER, agonist addition results in redis-
tribution from nuclear diffuse to discrete foci
within minutes [Htun et al., 1999; Stenoien
et al., 2000], suggesting that it is the focal GFP-
ER that is transcriptionally competent. In this
vein, some AR antagonists cause nuclear trans-
location of GFP-AR but fail to form foci [Tyagi
et al., 2000; (Simeoni S, Stenoien DL, Mancini
MG, Mancini MA, manuscript in preparation)].
Real-time extraction studies to assess the
solubility of GFP-ER in individual cells [Ste-
noien et al., 2000, see below] demonstrate a
strong link between foci formation and NM
association. Furthermore, GFP-ER deletion
analyses also support the idea that reorganiza-
tion and NM association are related since they
require the same molecular domains (Stenoien
DL, Mancini MG, Patel K, Smith CL, Mancini
MA, manuscript in preparation). ER antago-
nists also shift ER to the NM and reorganize the
receptor although in some cases the antagonist
induced reorganization is distinct from that
observed with agonist [Stenoien et al., 2000].
These data suggest that binding to the NM may
have other functions in addition to the organi-
zation of focal sites of transcription factors.

While the agonists and antagonists thus far
tested each cause ER to associate with the NM,
only agonist-bound ER recruits functionally
important coactivator molecules such as steroid
receptor coactivator 1 (SRC-1) [Stenoien et al.,
2000]. Several motifs with the sequence LXXLL
are found in SRC-1 in a region comprising
amino acids 570±780. A yellow ¯uorescent
version of this protein (YFP-SRC570-780) is
recruited to cyan ¯uorescent protein-ER (CFP-
ER) foci following agonist addition and becomes
resistant to detergent extraction (Fig. 1). The
YFP-SRC570-780 by itself is predominantly
cytoplasmic since it lacks the NLS found at
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the amino terminus of SRC-1. Presumably
this smaller fragment of SRC-1 is able to
pass through the nuclear pore complex, per-
haps through association with other factors,
leading to a striking intranuclear accumulation
and colocalization with, speci®cally, agonist-
bound CFP-ER.

Although there is a correlation between
transcription factor reorganization and tran-
scriptional competence, the functional signi®-
cance of transcription factor foci remains
unclear. Part of this uncertainty is due to the
®nding that very few of the foci containing ER
and other transcription factors colocalize with
the active sites of transcription mentioned
above [Grande et al., 1997; Stenoien et al.,

2000]. A possible explanation for this is that
interactions between transcription factors and
transcription sites are highly dynamic. The
`snapshots' of transcriptional activity by in situ
run ons or direct ®xation/immunolabeling ap-
proaches only offer a single timepoint view. It is
unclear how long the transcription foci are
actually active, more importantly, the vast
non-localizing transcription factor foci may or
may not develop into active transcription sites
or, conversely, may have just terminated this
activity. Indeed, some of these foci may repre-
sent sites of degradation.

A cell line containing multiple copies of the
MMTV promoter was recently used to study
interactions between ¯uorescent glucocorticoid

Fig. 1. CFP-ER is insoluble and recruits coactivators following
agonist addition. HeLa cells were co-transfected with CFP-ER
(red) and a YFP-SRC1 fragment (YFP-SRC570-780; green)
containing the LXXLL motifs required for ER interactions. Cells
were imaged following treatment for 2 h with vehicle (top row),
10 nM E2 (second row), 10 nM 4HT (third row) or 10 nM ICI
182,780 (bottom row), CFP-ER is shown in pseudo-color red
and YFP-SRC570-780 is shown in green. The YFP-SRC570-780

is predominantly cytoplasmic in the absence of hormone but
accumulates in the nucleus and co-localizes with CFP-ER only
in the presence of E2. In the absence of added ligand, most of the
CFP-ER and YFP-SRC570-780 ¯uorescence was removed
following treatment with detergent. Although both agonists
and antagonists cause CFP-ER to target the NM, retention of
YFP-SRC570±780 occurs only in the presence of both CFP-ER
and E2.
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receptors (GFP-GR) and DNA binding sites in
vivo [McNally et al., 2000]. Fluorescence recov-
ery after photobleaching (FRAP) revealed that
GFP-GR undergoes rapid exchange with DNA
on this transcriptionally active locus. This
suggests a model in which steroid receptors
interact transiently (for seconds) with tran-
scription sites and this is suf®cient to initiate
transcription. This model may help to explain
why only a small fraction of the transcription
factors are found at transcription sites when a
static image of ®xed cells is analyzed by
immuno¯uorescence.

FRAP data analyzing bulk, nuclear CFP-ER,
in the presence and absence of different types of
ligand, demonstrates that ER can exhibit
different types of intranuclear mobility depen-
dent upon its ligand-bound state [Stenoienetal.,
2001]. In the absence of any ligand, CFP-ER is
highly mobile (recovery half-life of �0.8 sec)
indicative of a molecular complex that makes
few if any speci®c interactions with relatively
immobile nuclear components. Following treat-
ment with an agonist, estradiol, or the partial
antagonist, 4-hydroxy tamoxifen, CFP-ER
mobility is slowed (recovery half-life of �5±6
sec). As ligands surely cause steroid receptors to
shed some proteins and recruit others, the
change in mobility may be an extension of the
receptor's af®nity to insoluble components
directly or indirectly. However, since CFP-ER
recovers within seconds, this indicates that
interactions with the NM are highly dynamic.
Other nuclear factors (i.e., splicing factors)
that have been shown by biochemical methods
to partition with the insoluble nuclear matrix
also exhibit this dynamic behavior with rela-
tively fast photobleach recovery rates of
seconds [Kruhlak et al., 2000; Phair and
Mistelli, 2000].

The rapid exchange rates observed with these
nuclear proteins has led to con¯icting inter-
pretations on the involvement of the NM in
nuclear organization. Two recent commentaries
have implied that the seemingly rapid mobility
rates demonstrate movement within the
nucleus is mostly diffusional with little in¯u-
ence exerted by insoluble nuclear structures
[Lewis and Tollerwey, 2000; Pederson, 2000].
An alternative interpretation of these data is
that the reduced mobility of nuclear proteins is
due to interactions with a nucleoskeleton
[Kruhlak et al., 2000; Shopland and Lawrence,
2000; Stenoien et al., 2001]. Supporting this

second interpretation is the observation that
mobility is slower than expected for GFP and
even large macromolecules (up to 580 kD) that
are relatively free to diffuse within the nucleus
[Seksek et al., 1997]. Since the size of the steroid
receptor complexes do not drastically change
(�500 kD before and after hormone treatment)
[McKenna et al., 1998], this argues that the
ligand-speci®c reduction of mobility is due to
interactions with components of the NM. In
contrast to ruling out the existence of interac-
tions of transcription factors with the NM, the
above studies point out the importance of
dynamic vs. static interactions. Recent FRAP
studies on agonist-bound ER demonstrate that
rapid exchange occurs with target sites in
chromatin and the NM. In the presence of the
pure antagonist, ICI 182,780 however, CFP-ER
is immobilized with little ¯uorescent recovery
over several minutes following the bleach (Fig.
2). The ICI 182,780-bound receptor is detergent
insoluble and biochemically partitions comple-
tely with the NM fraction [Stenoien et al., 2000]
following chromatin removal suggesting that it
is bound to some structure other than chroma-
tin. Dual FRAP studies with CFP-ER and YFP-
SRC-1 indicate that even individual compo-
nents of transcription complexes undergo rapid
exchange in the presence of agonist [Stenoien
et al., 2001].

Our lab has utilized distinct but complemen-
tary approaches to study the interactions of
steroid receptors with the NM. First, careful
biochemical analysis of endogenous ER parti-
tioning in MCF-7 cells demonstrates a dramatic
shift from the detergent soluble to the NM-
bound fraction within minutes of adding ligand.
This solubility shift occurs on the same time
scale (min) as foci formation occurs indicating
the two events may be related [Stenoien et al.,
2000]. To con®rm this, we have developed a
method to analyze the solubility of ¯uores-
cently-tagged steroid receptors and coregula-
tors in real time. This method involves
analyzing individual cells before, during, and
after the extraction protocol to obtain an
unambiguous assessment of the extent of NM
association. An important ®nding from these
real-time analyses is that protein expression
levels can affect the extent of NM association. In
cells where ER is grossly overexpressed, the
receptor is largely insoluble regardless of its
ligand bound state, whereas in cells that ex-
press lower levels of ER, the receptor solubility
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re¯ects the same ligand dependence as endo-
genous ER. When the solubility of the ER is
analyzed by western blotting techniques, the
results can be skewed by the presence of the
small number of cells that overexpress large
amounts of protein.

These ®ndings point to two important issues
relating to NM partitioning studies in general.
First, great care must be taken when assessing
the NM association of transiently transfected
proteins due to potential artifacts caused by
overexpression. This reality of transient trans-
fections suggests that re-evaluation of some NM
targeting studies may be required. Second, the
NM may have a physiological role in the
removal of excess and/or misfolded proteins.
Several studies have suggested pathways invol-
ving ubiquitin and proteasomes that play an
important role in steroid receptor function
[Alarid et al., 1999; El Khissiin et al., 1999;
Nawaz et al., 1999a]. In one report, the E6-AP
protein, a ubiquitin-protein ligase, was shown
to function as a ligand-speci®c steroid receptor
coactivator [Nawaz et al., 1999b]. As ubiquitin
conjugated proteins are processed by the 26S
proteasome complex [DeMartino and Slaugh-
ter, 1999], this suggests that ubiquitin modi®ed
steroid receptors are processed by proteasomes.

Inhibition of proteasome function prevents
receptor downregulation providing direct evi-
dence of proteasome involvement in steroid
receptor turnover. Ligand dependent turnover
may be important for transcriptional control
by down regulating transcription complexes.
Moreover, proteasomes may regulate the dy-
namic interactions required for transcription as
treatment with proteasome inhibitors prevents
ER-based transcription even though ER protein
levels increase [Lonard et al., 2000]. FRAP
analysis also shows that even brief inhibition
of proteasome function results in an immobile,
NM-bound fraction [Stenoien et al., 2001].

The FRAP studies demonstrate that tran-
scription factors can have different types of
interactions with the NM. In the case of es-
trogen-bound ER, these interactions are much
more transient and dynamic than observed with
the statically bound ER following ICI 182,780
addition, proteasome inhibition, or ATP deple-
tion [Stenoien et al., 2001]. In each case how-
ever, traditional biochemical partitioning
assays show both the dynamic and static re-
ceptors partition with the NM fraction implying
that even transient interactions with the NM
are suf®cient to retain ER within the nucleus
following detergent treatment. The ®nding that

Fig. 2. CFP-ER is immobile and insoluble in the presence of ICI
182,780. HeLa cells transfected with CFP-ER were treated with
the ER antagonist ICI 182,780 (10 nM, 20 min, left panels). The
region denoted by the box was bleached by repeated laser
scanning for 2 sec. No ¯uorescence recovery after photobleach-

ing (FRAP) is observed after 1 min (middle panels). A real-time
detergent extraction using buffer with 0.5% Triton X-100 was
performed to demonstrate the immobile receptor is also
insoluble (right panels). Bar� 10 microns.
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ligand-bound ER does not diffuse out of the
nucleus and remains insoluble even following
chromatin removal [Stenoien et al., 2000]
suggests that ER interacts with some structure
other than chromatin. Also, NM-bound GFP-ER
foci undergo little change in their size and
distribution during real-time monitoring of the
extraction procedure thus indicating NM asso-
ciation is not due to non-speci®c aggregation of
certain proteins [Stenoien et al., 2000].

Targeting of overexpressed proteins to the
NM may re¯ect a physiological role for the
ligand-independent partitioning. Immunola-
beling studies suggest there is an upregulation
of heat shock proteins within the nuclei of some
cells overexpressing nuclear proteins, perhaps
indicative of an attempt to deal with an increase
in misfolded proteins. This upregulation of heat
shock proteins is observed with aggregate-
forming AR mutations found in a cancer patient
[Nazareth et al., 1999], (Stenoien DL, Mancini
MG, Patel K, Mancini MG, Weigel NL, Mancini
MA, manuscript in preparation) and due to
polyglutamine expansion [Stenoien et al.,
1999]. In the latter case, co-expression of
chaperones inhibit aggregate formation. In
addition to upregulation of endogenous heat
shock proteins, protein aggregates also seques-
ter proteasome components. A second example
of the physiological relevance of this process is
found with the Pit-1 mutants mentioned above
that can aberrantly associate with the NM.
Chaperone and proteasome labeling also sug-
gests a cell stress response (Sharp ZD, Stenoien
DL, Mancini MG, Mancini MA, manuscript in
preparation). These ®ndings are reminiscent of
the cell stress and proteasome response caused
by polyglutamine expanded proteins associated
with neurodegenerative disorders. Recent
photobleaching studies of the Pit-1 mutants
indicate that at low protein levels they exhibit
similar dynamic behavior as wild-type Pit-1.
However, once a threshold level of expression is
obtained, the Pit-1 mutants can become immo-
bilized and rapidly accumulate on the NM.
Interestingly, unlike several inactivating Pit-1
point mutants, even gross overexpression of
wild-type Pit-1 does not lead to increased NM
association [Mancini et al., 1999]. These results
suggest that the NM may serve as a depository
and disposal site for, in particular, misfolded
proteins, and this site can be swamped due to
overexpression or accumulation of mutant
proteins over time.

CONCLUSIONS

Recent data continue to shed light on the
interrelationships between nuclear structure
and function. Increasingly, new studies support
a role of the NM in the organization of the
metabolic machineries within the nucleus. This
organization may help to ensure that processes
such as gene transcription are carried out in an
ef®cient manner. In addition, the NM may serve
as a site involved in the disposal of misfolded
proteins and clearance of transcription factors
following transcription. Also, in contrast to the
static images obtained using ®xed microscopic
specimens and biochemical portioning assays,
live microscopy and FRAP demonstrate that
many nuclear factors make dynamic interac-
tions with the nuclear substructure. These
latest results suggest a model in which the NM
regulates both the spatial and temporal dis-
tribution of nuclear proteins to ensure that
these proteins function ef®ciently. Further-
more, mutations that disrupt the localization
and/or dynamics of NM-associated proteins
may have consequences related to human
diseases.
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